Learn About Backup Technology

In information technology, a backup or the process of backing up refer to making copies of data so that these additional copies may be used to restore the original after a data loss event. These additional copies are typically called "backups." The verb is back up in two words, whereas the noun is backup (often used like an adjective in compound nouns).
Backups are useful primarily for two purposes. The first is to restore a state following a disaster (called disaster recovery). The second is to restore small numbers of files after they have been accidentally deleted or corrupted. Data loss is also very common. 66% of internet users have suffered from serious data loss.
Since a backup system contains at least one copy of all data worth saving, the data storage requirements are considerable. Organizing this storage space and managing the backup process is a complicated undertaking. A data repository model can be used to provide structure to the storage. In the modern era of computing there are many different types of data storage devices that are useful for making backups. There are also many different ways in which these devices can be arranged to provide geographic redundancy, data security, and portability.
Before data is sent to its storage location, it is selected, extracted, and manipulated. Many different techniques have been developed to optimize the backup procedure. These include optimizations for dealing with open files and live data sources as well as compression, encryption, and de-duplication, among others. Many organizations and individuals try to have confidence that the process is working as expected and work to define measurements and validation techniques. It is also important to recognize the limitations and human factors involved in any backup scheme.

Types Of Backup

Any backup strategy starts with a concept of a data repository. The backup data needs to be stored somehow and probably should be organized to a degree. It can be as simple as a sheet of paper with a list of all backup tapes and the dates they were written or a more sophisticated setup with a computerized index, catalog, or relational database. Different repository models have different advantages. This is closely related to choosing a backup rotation scheme.

Unstructured

An unstructured repository may simply be a stack of floppy disks or CD-R/DVD-R media with minimal information about what was backed up and when. This is the easiest to implement, but probably the least likely to achieve a high level of recoverability.

Full + Incrementals

A Full + Incremental repository aims to make storing several copies of the source data more feasible. At first, a full backup (of all files) is taken. After that, any number of incremental backups can be taken. There are many different types of incremental backups, but they all attempt to only backup a small amount of data relative to the full backup. Restoring a whole system to a certain point in time would require locating the full backup taken previous to that time and the incremental backups that cover the period of time between the full backup and the particular point in time to which the system is supposed to be restored. The scope of an incremental backup is typically defined as a range of time relative to other full or incremental backups. Different implementations of backup systems frequently use specialized or conflicting definitions of these terms.
Differential backup
A differential backup copies files that have been created or changed since the last normal or incremental backup. It does not mark files as having been backed up (in other words, the archive attribute is not cleared). If you are performing a combination of normal and differential backups, restoring files and folders requires that you have the last normal as well as the last differential backup.

Storage Media

Regardless of the repository model that is used, the data has to be stored on some data storage medium somewhere.

Magnetic tape

Magnetic tape has long been the most commonly used medium for bulk data storage, backup, archiving, and interchange. Tape has typically had an order of magnitude better capacity/price ratio when compared to hard disk, but recently the ratios for tape and hard disk have become a lot closer. There are myriad formats, many of which are proprietary or specific to certain markets like mainframes or a particular brand of personal computer. Tape is a sequential access medium, so even though access times may be poor, the rate of continuously writing or reading data can actually be very fast. Some new tape drives are even faster than modern hard disks. A principal advantage of tape is that it has been used for this purpose for decades (much longer than any alternative) and its characteristics are well understood.

Hard disk

The capacity/price ratio of hard disk has been rapidly improving for many years. This is making it more competitive with magnetic tape as a bulk storage medium. The main advantages of hard disk storage are low access times, availability, capacity and ease of use. External disks can be connected via local interfaces like SCSI, USB, FireWire, or eSATA, or via longer distance technologies like Ethernet, iSCSI, or Fibre Channel. Some disk-based backup systems, such as Virtual Tape Libraries, support data deduplication which can dramatically reduce the amount of disk storage capacity consumed by daily and weekly backup data. The main disadvantages of hard disk backups are that they are easily damaged, especially while being transported (e.g., for off-site backups), and that their stability over periods of years is a relative unknown.

Optical disc

A recordable CD can be used as a backup device. One advantage of CDs is that they can in theory be restored on any machine with a CD-ROM drive. (In practice, writable CD-ROMs are not always universally readable.) In addition, recordable CD's are relatively cheap. Another common format is recordable DVD. Many optical disk formats are WORM type, which makes them useful for archival purposes since the data can't be changed. Other rewritable formats can also be utilized such as CD-RW or DVD-RAM. The newer HD-DVDs and Blu-ray Discs dramatically increase the amount of data possible on a single optical storage disk, though, as yet, the hardware may be cost prohibitive for many people. Additionally the physical lifetime of the optical disk has become a concern as it is possible for some optical disks to degrade and lose data within a couple of years.
Floppy disk
During the 1980s and early 1990s, many personal/home computer users associated backup mostly with copying floppy disks. The low data capacity of a floppy disk makes it an unpopular and obsolete choice today.

Solid state storage

Also known as flash memory, thumb drives, USB flash drives, CompactFlash, SmartMedia, Memory Stick, Secure Digital cards, etc., these devices are relatively costly for their low capacity, but offer excellent portability and ease-of-use.

Remote backup service

As broadband internet access becomes more widespread, remote backup services are gaining in popularity. Backing up via the internet to a remote location can protect against some worst-case scenarios such as fires, floods, or earthquakes which would destroy any backups in the immediate vicinity along with everything else. There are, however, a number of drawbacks to remote backup services. First, internet connections (particularly domestic broadband connections) are generally substantially slower than the speed of local data storage devices, which can be a problem for people who generate or modify large amounts of data. Secondly, users need to trust a third party service provider with both privacy and integrity of backed up data. The risk associated with putting control of personal or sensitive data in the hands of a third party can be managed by encrypting sensitive data so that its contents cannot be viewed without access to the secret key. Ultimately the backup service must itself be using one of the above methods, so this could be seen as a more complex way of doing traditional backups
 
Top